Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.354
Filtrar
1.
Bull Environ Contam Toxicol ; 112(4): 54, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565781

RESUMEN

Contamination of aquatic and terrestrial environment with hexavalent chromium Cr(VI) is one of the major hazards worldwide due its carcinogenicity, persistency and immobility. Different research techniques have been adopted for Cr(VI) remediation present in terrestrial and aquatic media, while adsorption being the most advance, low cost, environmentally friendly and common method. The present study discussed the mechanisms of Parthenium hysterophorus derived biochar, iron-doped zinc oxide nanoparticles (nFe-ZnO) and Fe-ZnO modified biochar (Fe-ZnO@BC) involved in Cr(VI) mobility and bioavailability. Pot experiments were conducted to study the effect of Parthenium hysterophorus derived biochar, nFe-ZnO and Fe-ZnO@BC application rates (2%, 2 mg/kg, 10 mg/kg, respectively). The results indicated that the addition of soil amendments reduced Cr(VI) mobility. The findings revealed that the reduction in chromium mobility was observed by P. hysterophorus BC, and Fe-ZnO@BC but nFe-ZnO application significantly (p = 0.05) reduced Cr(VI) and CrT uptake as compared to the control treatments. The results of SEM coupled with EDS showed a high micropores and channel, smooth surface which helped in adsorption, and may enhance soil conditions. The concentration index (CI) by different amendments in trifolium plant was followed the descending order as: nFe-ZnO > Fe-ZnO@BC > P. hysterophorus BC after 30, 60 and 90 days of harvesting, respectively. In addition, human health risk index was found less than one (H1 < 1.0) in amended soils as compared to control treatments.


Asunto(s)
Compuestos Férricos , Trifolium , Contaminantes Químicos del Agua , Óxido de Zinc , Humanos , Zinc , Carbón Orgánico , Cromo , Hierro , Suelo , Adsorción
2.
Sci Rep ; 14(1): 6264, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491088

RESUMEN

Red clover (Trifolium pratense L.) is a forage legume cultivated worldwide. This plant is capable of establishing a nitrogen-fixing symbiosis with Rhizobium leguminosarum symbiovar trifolii strains. To date, no comparative analysis of the symbiotic properties and heterogeneity of T. pratense microsymbionts derived from two distinct geographic regions has been performed. In this study, the symbiotic properties of strains originating from the subpolar and temperate climate zones in a wide range of temperatures (10-25 °C) have been characterized. Our results indicate that all the studied T. pratense microsymbionts from two geographic regions were highly efficient in host plant nodulation and nitrogen fixation in a wide range of temperatures. However, some differences between the populations and between the strains within the individual population examined were observed. Based on the nodC and nifH sequences, the symbiotic diversity of the strains was estimated. In general, 13 alleles for nodC and for nifH were identified. Moreover, 21 and 61 polymorphic sites in the nodC and nifH sequences were found, respectively, indicating that the latter gene shows higher heterogeneity than the former one. Among the nodC and nifH alleles, three genotypes (I-III) were the most frequent, whereas the other alleles (IV-XIII) proved to be unique for the individual strains. Based on the nodC and nifH allele types, 20 nodC-nifH genotypes were identified. Among them, the most frequent were three genotypes marked as A (6 strains), B (5 strains), and C (3 strains). Type A was exclusively found in the temperate strains, whereas types B and C were identified in the subpolar strains. The remaining 17 genotypes were found in single strains. In conclusion, our data indicate that R. leguminosarum sv. trifolii strains derived from two climatic zones show a high diversity with respect to the symbiotic efficiency and heterogeneity. However, some of the R. leguminosarum sv. trifolii strains exhibit very good symbiotic potential in the wide range of the temperatures tested; hence, they may be used in the future for improvement of legume crop production.


Asunto(s)
Fabaceae , Rhizobium leguminosarum , Rhizobium , Trifolium , Rhizobium leguminosarum/genética , Simbiosis/genética , Fabaceae/genética , Trifolium/genética , Fijación del Nitrógeno , Filogenia , Rhizobium/genética , ADN Bacteriano/genética
3.
Environ Monit Assess ; 196(3): 283, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38372826

RESUMEN

Plant growth-promoting rhizobacteria (PGPR) can promote plant growth and development with several beneficial effects, especially in challenging environmental conditions, such as the presence of toxic contaminants. In this study, 49 isolates obtained from Trifolium sp. nodules growing on a Pb/Zn mine site were characterized for PGP traits including siderophores production, phosphate solubilization, extracellular enzymes production, and antifungal activity. The isolates were also screened for their ability to grow at increasing concentrations of NaCl and heavy metals, including lead, zinc, cobalt, copper, nickel, cadmium, and chromium. The findings of our study indicated that isolates Cupriavidus paucula RSCup01-RSCup08, Providencia rettgeri RSPro01, Pseudomonas putida RSPs01, Pseudomonas thivervalensis RSPs03-RSPs09, and Acinetobacter beijerinckii RSAci01 showed several key traits crucial for promoting plant growth, thus demonstrating the greatest potential. Most isolates displayed resistance to salt and heavy metals. Notably, Staphylococcus xylosus RSSta01, Pseudomonas sp. RSPs02, Micrococcus yunnanensis RSMicc01, and Kocuria dechangensis RSKoc01 demonstrated a significant capacity to grow at salt concentrations ranging from 10 to 20%, and isolates including Cupravidus paucula RSCup01-RSCup08 exhibited resistance to high levels of heavy metals, up to 1300 mg/L Pb++, 1200 mg/L Zn++, 1000 mg/L Ni++, 1000 mg/L Cd++, 500 mg/L Cu++, 400 mg/L Co++, and 50 mg/L CrVI+. Additionally, the analysis revealed that metal-resistant genes pbrA, czcD, and nccA were exclusively detected in the Cupriavidus paucula RSCup01 strain. The results of this study provide insights into the potential of plant growth-promoting rhizobacteria strains that might be used as inoculants to improve phytoremediation in heavy metal-contaminated soils.


Asunto(s)
Metales Pesados , Trifolium , Plomo , Monitoreo del Ambiente , Metales Pesados/toxicidad , Zinc , Cloruro de Sodio
4.
Braz J Biol ; 84: e280008, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38422300

RESUMEN

Mining environmental liabilities generate environmental pollution. The objective of the present study was to determine the yield of white clover (Trifolium repens) and orchard grass (Dactylis glomerata) cultivated in mining environmental passives adding black earth and compost as a substrate in the Buenaventura Julcani Huancavelica Company. The treatments were the combinations: 4: 3.1: 3.1: 3:1.1 kg of RP: RP, TN: RP, C: RP, TN, C respectively. They were distributed in four treatments with twelve experimental units for each species of leguminous and gramineous grass, we worked according to the completely randomized design (DCA) with a 2 x 4 factorial arrangement, the experimental unit being a treatment with twelve repetitions. The variables evaluated were: germination percentage (TG) and stem survival percentage (TST). For the statistical analysis, the SPSS software was used.


Asunto(s)
Compostaje , Trifolium , Dactylis , Medicago , Distribución Aleatoria
5.
Sci Rep ; 14(1): 2698, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302681

RESUMEN

A novel bacterium, designated strain MMK2T, was isolated from a surface-sterilised root nodule of a Trifolium rubens plant growing in south-eastern Poland. Cells were Gram negative, non-spore forming and rod shaped. The strain had the highest 16S rRNA gene sequence similarity with P. endophytica (99.4%), P. leporis (99.4%) P. rwandensis (98.8%) and P. rodasii (98.45%). Phylogenomic analysis clearly showed that strain MMK2T and an additional strain, MMK3, should reside in the genus Pantoea and that they were most closely related to P. endophytica and P. leporis. Genome comparisons showed that the novel strain shared 82.96-93.50% average nucleotide identity and 26.2-53. 2% digital DNA:DNA hybridization with closely related species. Both strains produced siderophores and were able to solubilise phosphates. The MMK2T strain was also able to produce indole-3-acetic acid. The tested strains differed in their antimicrobial activity, but both were able to inhibit the growth of Sclerotinia sclerotiorum 10Ss01. Based on the results of the phenotypic, phylogenomic, genomic and chemotaxonomic analyses, strains MMK2T and MMK3 belong to a novel species in the genus Pantoea for which the name Pantoea trifolii sp. nov. is proposed with the type strain MMK2T (= DSM 115063T = LMG 33049T).


Asunto(s)
Pantoea , Trifolium , Análisis de Secuencia de ADN , Pantoea/genética , Trifolium/genética , ARN Ribosómico 16S/genética , ADN , Filogenia , ADN Bacteriano/genética , Ácidos Grasos/análisis , Técnicas de Tipificación Bacteriana , Hibridación de Ácido Nucleico
6.
Food Chem ; 446: 138764, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38408399

RESUMEN

Red clover (Trifolium pratense) isoflavone was supplemented to dairy cows, and antioxidant capacity of milk was assessed. Treated cows increased the activities of antioxidant enzymes, reduced production of oxidation products, and enhanced the concentrations of vitamin E and vitamin C. Moreover, milk fatty acid profile was positive influenced by 8 g/kg red clover isoflavone, with changes in the lower saturated and higher unsaturated fatty acids. We further demonstrated the efficacy of antioxidant capacity of milk in mice, found that milk from cows feeding red clover isoflavone increased the expressions of antioxidant enzymes, and alleviated lipopolysaccharide (LPS)-stimulated tissue damage of duodenum and jejunum, which was related to upregulated metabolism pathways of carbohydrate, lipid, and amino acid, as well as downregulated inflammatory related pathways. Together, dietary supplementation of red clover isoflavone is an effective way to improve milk antioxidant capacity, providing a natural strategy for developing functional foods.


Asunto(s)
Leche , Trifolium , Femenino , Bovinos , Animales , Ratones , Leche/química , Trifolium/química , Antioxidantes/análisis , Dieta/veterinaria , Lactancia , Ensilaje/análisis , Suplementos Dietéticos , Alimentación Animal/análisis
7.
Phytother Res ; 38(3): 1294-1309, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38189863

RESUMEN

This updated systematic review and meta-analysis aims to confirm the effectiveness of plant-based supplements in improving overall menopausal symptoms and vasomotor symptoms. A systematic review of the literature was conducted by searching the PubMed/MEDLINE, Web of Science, EMBASE, and CENTRAL databases up to June 2022. Randomized placebo-controlled clinical trials that evaluated the effects of dietary supplements on menopausal symptoms were included. Outcome measures included daily hot flash frequency, Kupperman's index, Menopause Rating Scale, and Greene Climacteric Scale. Pooled data were analyzed using a fixed-effects model and expressed as a weighted mean difference with a 95% confidence interval for continuous outcomes. For qualitative assessment, 67 studies were selected. For quantitative assessment, 54 reports were obtained from 61 studies. The study participants were peri- or postmenopausal women aged 38-85, most of whom experienced hot flashes as a menopausal symptom. The investigational products included 28 soy-derived, 6 red clover-derived, and 28 other plant-derived supplements. Qualitative assessment revealed that approximately 76% of the studies were generally of fair or good quality, whereas 24% were of low quality. Meta-analysis results indicated significant improvements in all questionnaire scores, including hot flash frequency, in the dietary supplement group compared with the placebo group. Comprehensive evaluation using different questionnaire tools showed that the various plant-derived dietary supplements can significantly alleviate menopausal symptoms. However, further rigorous studies are needed to determine the association of plant-derived dietary supplements with menopausal health because of the general suboptimal quality and heterogeneous nature of current evidence.


Asunto(s)
Menopausia , Trifolium , Femenino , Humanos , Sofocos/tratamiento farmacológico , Suplementos Dietéticos
8.
Sci Total Environ ; 914: 169991, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38215843

RESUMEN

Cover crops reduce nitrate leached, but effects on nitrous oxide (N2O) emissions are mixed. Cover crops can reduce N2O emissions by reducing levels of mineral nitrogen (N) and surface soil moisture during spring. Cover crops can also increase N2O emissions by adding organic substrates, releasing N during decomposition, or increasing summer soil water content. Winter-killed cover crops can increase soluble organic C and N during periods of typically low microbial activity. We hypothesized that planting a cover crop mix of radish (Raphanus sativus)-crimson clover (Trifolium incarnatum)-rye (Secale cereale) would increase direct N2O emissions relative to no cover crop, and result in lower direct and indirect N2O emissions than planting radish alone. We also hypothesized that extending the cover crop growing season, by planting earlier and killing later, would increase direct N2O emissions during winter, decrease direct N2O emissions during summer, and decrease indirect N2O emissions. To address these hypotheses, we conducted two field experiments (on sandy and silty soils) over four site-years. We measured cover crop biomass and N content, soil mineral N concentrations, soil moisture, green canopy cover, soil porewater nitrate, direct N2O emissions, and estimated indirect N2O emissions. Nitrous oxide emissions were ~ 7.8 times greater at the silty than the sandy sites due to greater soil moisture retention. Site-years with high radish biomass exhibited greater direct N2O emissions than sites with low radish biomass following winter-kill. Indirect N2O emissions were decreased ~7 % by planting cover crops and by ~70 % by planting cover crops early. Fertilizer induced emission peaks were 8.2 times greater than all previous N2O emissions combined at a silty site. Our results suggested that soil texture and fertilization played an important role in direct N2O emissions, while cover crop species, biomass, and timing played a more important role in NO3 leached, and thus, indirect N2O emissions.


Asunto(s)
Suelo , Trifolium , Suelo/química , Óxido Nitroso/análisis , Nitratos , Arena , Estaciones del Año , Productos Agrícolas , Minerales , Fertilización , Agricultura , Fertilizantes , Nitrógeno/análisis
9.
BMC Genomics ; 25(1): 128, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38297198

RESUMEN

BACKGROUND: The NAC TF family is widely involved in plant responses to various types of stress. Red clover (Trifolium pratense) is a high-quality legume, and the study of NAC genes in red clover has not been comprehensive. The aim of this study was to analyze the NAC gene family of red clover at the whole-genome level and explore its potential role in the Pb stress response. RESULTS: In this study, 72 TpNAC genes were identified from red clover; collinearity analysis showed that there were 5 pairs of large fragment replicators of TpNAC genes, and red clover was found to be closely related to Medicago truncatula. Interestingly, the TpNAC genes have more homologs in Arabidopsis thaliana than in soybean (Glycine max). There are many elements in the TpNAC genes promoters that respond to stress. Gene expression analysis showed that all the TpNAC genes responded to Pb stress. qRT-PCR showed that the expression levels of TpNAC29 and TpNAC42 were significantly decreased after Pb stress. Protein interaction network analysis showed that 21 TpNACs and 23 other genes participated in the interaction. In addition, the TpNAC proteins had three possible 3D structures, and the secondary structure of these proteins were mainly of other types. These results indicated that most TpNAC members were involved in the regulation of Pb stress in red clover. CONCLUSION: These results suggest that most TpNAC members are involved in the regulation of Pb stress in red clover. TpNAC members play an important role in the response of red clover to Pb stress.


Asunto(s)
Genoma de Planta , Trifolium , Trifolium/genética , Factores de Transcripción/genética , Plomo , Perfilación de la Expresión Génica
10.
Artículo en Inglés | MEDLINE | ID: mdl-38284408

RESUMEN

Three yeast isolates, NBRC 115909T, NBRC 115910 and NBRC 116270, were isolated from Trifolium pratense (red clover) flowers collected from Kisarazu, Chiba, Japan. Analysis of the sequences of the D1/D2 domains of the large subunit (LSU) rRNA gene and the internal transcribed spacer (ITS) regions revealed that these isolates represent a single novel species within the genus Starmerella. Also, no ascospore formation was observed. The yeast isolates were closely related to Starmerella vitae UWOPS 00-107.2T and Starmerella bombi NRRL Y-17081T. They differed from S. vitae, the most closely related species with a validly published name, by ten nucleotide substitutions with two gaps in the D1/D2 domains and 20 nucleotide substitutions in the ITS region. Moreover, the three isolates exhibited distinct phenotypic characteristics from the closely related species. Therefore, we suggest that these three isolates represent a novel species, designated as Starmerella kisarazuensis f.a., sp. nov. The holotype is NBRC 115909T (isotype: CBS 18485T).


Asunto(s)
Saccharomycetales , Trifolium , Trifolium/genética , Filogenia , ADN de Hongos/genética , Técnicas de Tipificación Micológica , Análisis de Secuencia de ADN , Composición de Base , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Ácidos Grasos/química , Saccharomycetales/genética , Flores , Nucleótidos , ADN Espaciador Ribosómico/genética , Tailandia
11.
J Econ Entomol ; 117(2): 609-617, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38284646

RESUMEN

The clover seed weevil, Tychius picirostris Fabricius, a serious pest of white clover, Trifolium repens L., grown for seed in western Oregon, causing feeding damage to flowers and developing seeds. Since 2017, white clover seed producers have anecdotally reported T. picirostris control failures using foliar pyrethroid insecticide applications. This mode of action (MoA) is an important chemical control option for T. picirostris management. To evaluate insecticide resistance selection to pyrethroids (bifenthrin) and other MoAs labeled for T. picirostris management (malathion and chlorantraniliprole), adult populations were collected from 8 commercial white clover grown for seed fields in the Willamette Valley, OR, in 2022 and 2023. Among collected Oregon populations, very high resistance ratios (RR50 = 178.00-725.67) were observed to technical grade bifenthrin and low to high resistance ratios (RR50 = 7.80-32.80) to malathion in surface contact assays compared to a susceptible Canadian field population. Moreover, >2.73 times the labeled rate of formulated product containing bifenthrin as the sole MoA was required to kill >50% of T. picirostris in topical assays. Synergistic assays with a mixed-function oxidase inhibitor, an esterase inhibitor, and a glutathione-S-transferase inhibitor revealed phase I and II detoxification enzymes are present in Oregon T. picirostris populations and confer metabolic resistance to bifenthrin. This is the first report of T. picirostris insecticide resistance selection to pyrethroid and organophosphate insecticides. Results will inform continued monitoring and insecticide resistance management strategies to slow the evolution of T. picirostris insecticide resistance selection in Oregon's white clover seed production.


Asunto(s)
Escarabajos , Insecticidas , Piretrinas , Trifolium , Gorgojos , Animales , Malatión , Oregon , Canadá , Piretrinas/farmacología , Insecticidas/farmacología , Resistencia a los Insecticidas , Productos Agrícolas
12.
J Anim Physiol Anim Nutr (Berl) ; 108(1): 1-12, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37377415

RESUMEN

Buffalo cows play a vital role in milk and meat production; however, they are characterised by several reproductive disorders. Feeding diets with high oestrogenic activity may be a disrupting factor. This study aimed to evaluate the effects of feeding roughages with different oestrogenic activity on the reproductive performance of early postpartum buffalo cows. A total of 30 buffalo cows were equally stratified into two experimental groups and fed either Trifolium alexandrinum (Berseem clover, phytoestrogenic roughage) or corn silage (nonoestrogenic roughage) for 90 consecutive days. After 35 days from the beginning of the feeding treatments, buffalo cows in both groups were synchronized for oestrus using a double i.m. injection of 2 mL prostaglandin F2α , 11 days apart, subsequently, overt signs of oestrus were observed and recorded. Moreover, ovarian structures, numbers and sizes of follicles and corpora lutea, were ultrasonography examined at day-12 (represents Day 35 of feeding treatment), Day 0 (day of oestrus) and Day 11 after oestrous synchronization (mid-luteal phase). Pregnancy was diagnosed 35 days postinsemination. Blood serum samples were analysed for progesterone (P4 ), estradiol (E2 ), tumor necrosis factor (TNF-α), interlukein-1ß (IL-1ß) and nitric oxide (NO). The high performance liquid chromatography-analysis of roughages showed the abundance of isoflavones in Berseem clover, with about 58 times higher concentration than that in corn silage group. During the experimental period, the numbers of ovarian follicles of all size categories were higher in the Berseem clover group than that in the corn silage group. No significant difference in the numbers of corpora lutea was observed between both experimental groups, but lower (p < 0.05) diameter of corpus luteum was observed in the Berseem clover group than that in the corn silage group. The Berseem clover group had higher (p < 0.05) overall concentrations of blood serum E2 , IL-1ß and TNF-α, but lower (p < 0.05) overall concentrations of blood serum P4 than those recorded in the corn silage group. Oestrous rate, onset of oestrus time and oestrous duration were not significantly affected by the treatment. The conception rate was significantly (p < 0.05) reduced in the Berseem clover group compared with that in the corn silage group. In conclusion, feeding roughage with a high oestrogenic activity such as Berseem clover can negatively affect the conception rate of buffalo cows. This reproductive loss seems to be associated with inadequate luteal function and P4 concentration during early pregnancy.


Asunto(s)
Búfalos , Trifolium , Embarazo , Femenino , Bovinos , Animales , Citocinas/genética , Factor de Necrosis Tumoral alfa , Dieta/veterinaria , Progesterona , Leche/química , Ensilaje/análisis , Zea mays , Trifolium/química , Fibras de la Dieta/análisis , Lactancia
13.
J Anim Physiol Anim Nutr (Berl) ; 108(1): 13-26, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37395331

RESUMEN

Inclusion of plants rich in secondary metabolites into grass ensiling offers multiple benefits for ruminants, from improving productive performance to health-promoting effects as well as helping to reduce environment pollution. The present meta-analysis summarizes the dietary inclusion levels of red clover silage (RCS) and sainfoin silages (SS) as well as the types of silages fed to dairy cows and small ruminants. A total of 37 in vivo studies (26 articles in dairy cows and 11 articles in small ruminants) were aggregated after being strictly selected using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A mixed model methodology was used to examine our objectives. This method declares the subject 'study' as random effects and 'inclusion level' as fixed effects. Results indicated that RCS proportion was not associated with nutrient digestibility except for a quadratic effect (p < 0.05) on neutral detergent fibre digestibility. Higher RCS inclusion linearly increased (p < 0.05) nitrogen (N) intake but had no effect on dairy cows' production. Increasing RCS proportion altered milk fatty acid profile where the concentration of conjugated linolenic acid (CLA), C18:3 α-linolenic acid (ALA) and C18:0 linearly increased (p < 0.01). In small ruminants, SS proportion had no relationship with nutrient digestibility, N metabolism and growth performance (p > 0.05). However, a combination of dietary RCS + SS resulted in significantly higher (p < 0.05) CLA and ALA concentration in cow milk and average daily gain (ADG) in small ruminants compared to diets composed from either grass silage or alfalfa silage. Altogether, this meta-analysis highlights the synergistic effects of a combination of SS + RCS inclusion in improving milk fatty acids (FA) profile of dairy cows and ADG of small ruminants.


Asunto(s)
Leche , Trifolium , Bovinos , Femenino , Animales , Leche/química , Ácidos Grasos/metabolismo , Ensilaje/análisis , Lactancia/metabolismo , Dieta/veterinaria , Poaceae/metabolismo , Rumiantes , Nutrientes , Digestión
14.
J Dairy Sci ; 107(3): 1450-1459, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37806636

RESUMEN

The effects of grass silage and red clover silage on milk fatty acid (FA) composition are extensively studied, but little is known of their effects on minor lipid constituents of milk fat globule membrane. We investigated the effects of forage:concentrate (FC) ratio in grass silage-based diets and forage type (grass silage vs. red clover silage) on selected molecular species of milk phospholipids (PL) and the FA composition of PL. Ten multiparous Nordic Red cows were offered following dietary treatments: grass silage-based diets containing 70:30 (HG) or 30:70 (LG) FC ratio or a red clover silage-based diet (RC) comprising 50:50 FC ratio on a dry matter basis. The most abundant molecular species within the phosphatidylcholines was 16:0-18:1 phosphatidylcholine that was increased by 18% in HG compared with LG milk. Dietary treatments did not affect the relative proportion of 18:1-18:1+18:0-18:2 phosphatidylethanolamine that was the most prevalent species (ca. 44%-45%) in that class. We identified the d18:1-22:0 sphingomyelin as the most abundant sphingomyelin species that tended to increase in HG milk compared with LG. The FC ratio did not affect the relative proportions of saturated FA nor monounsaturated FA in PL, but the proportion of cis-9 18:1 was elevated in HG versus LG milk, whereas the proportion of 18:2n-6 was 50% higher in LG versus HG milk. The RC diet increased monounsaturated FA and 18:3n-3 levels in PL compared with grass silage-based diets and decreased the relative proportion of saturated FA. However, the RC diet did not affect the relative proportion of polyunsaturated FA in PL, although red clover silage typically increases the proportion of polyunsaturated FA in milk fat. This study provides valuable knowledge of the minor lipid components in milk on species level in relation to common feeding strategies in high-forage systems.


Asunto(s)
Ácidos Grasos , Isótopos , Titanio , Trifolium , Femenino , Animales , Bovinos , Fosfolípidos , Esfingomielinas , Dieta/veterinaria , Ácidos Grasos Monoinsaturados , Fosfatidilcolinas , Poaceae
15.
Int J Phytoremediation ; 26(1): 143-150, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37405370

RESUMEN

Phytoremediation is a biological soil remediation technique using plants and their associated microorganisms to clean-up contaminated soils and improve soils' quality. We tested whether a co-culture between Miscanthus x giganteus (MxG) and Trifolium repens L. would enhance the soil biological quality. The objective was to determine the influence of MxG in mono- and in co-culture with white clover on the soil microbial activity, biomass and density. MxG was tested in mono- and in co-culture with white clover in a mesocosm over 148 days. The microbial respiration (CO2 production), the microbial biomass and the microbial density of the technosol were measured. Results showed that MxG induced an increase in microbial activity in the technosol compared to the non-planted condition with the co-culture having a greater impact. Regarding the bacterial density, MxG in mono- and in co-culture significantly increased the 16S rDNA gene copy number. The co-culture increased the microbial biomass, the fungal density and stimulated the degrading bacterial population, contrary to the monoculture and the non-planted condition. We can conclude the co-culture between MxG and white clover was more interesting than MxG monoculture in regards to the technosol biological quality and its potential for PAH remediation improvement.


Our precedent results have shown the benefits of using Miscanthus x giganteus in association with Trifolium repens L. to improve polycyclic aromatic hydrocarbons dissipation and decrease soil ecotoxicity compared to monocultures. In this study we focused on the plant species' influence on the soil's biological quality to improve MxG biomass productivity in the long term and phytoremediation. Many bioindicators were used such as microbial activity, microbial biomass as well as bacteria, fungi and PAH-degrading bacteria density.We showed it was more beneficial to use co-culture instead of MxG monoculture to improve biological technosol quality and in particular microbial activity and biomass as well as fungi and PAH-degrading bacteria density.


Asunto(s)
Contaminantes del Suelo , Trifolium , Biodegradación Ambiental , Biomasa , Técnicas de Cocultivo , Contaminantes del Suelo/análisis , Poaceae , Suelo , Microbiología del Suelo
16.
Int J Mol Sci ; 24(23)2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38069003

RESUMEN

The rhizosphere microbiota, which includes plant growth-promoting rhizobacteria (PGPR), is essential for nutrient acquisition, protection against pathogens, and abiotic stress tolerance in plants. However, agricultural practices affect the composition and functions of microbiota, reducing their beneficial effects on plant growth and health. Among PGPR, rhizobia form mutually beneficial symbiosis with legumes. In this study, we characterized 16 clover nodule isolates from non-farmed soil to explore their plant growth-promoting (PGP) potential, hypothesizing that these bacteria may possess unique, unaltered PGP traits, compared to those affected by common agricultural practices. Biolog profiling revealed their versatile metabolic capabilities, enabling them to utilize a wide range of carbon and energy sources. All isolates were effective phosphate solubilizers, and individual strains exhibited 1-aminocyclopropane-1-carboxylate deaminase and metal ion chelation activities. Metabolically active strains showed improved performance in symbiotic interactions with plants. Comparative genomics revealed that the genomes of five nodule isolates contained a significantly enriched fraction of unique genes associated with quorum sensing and aromatic compound degradation. As the potential of PGPR in agriculture grows, we emphasize the importance of the molecular and metabolic characterization of PGP traits as a fundamental step towards their subsequent application in the field as an alternative to chemical fertilizers and supplements.


Asunto(s)
Suelo , Trifolium , Medicago , Desarrollo de la Planta , Bacterias , Genómica , Microbiología del Suelo , Raíces de Plantas , Rizosfera
17.
Braz J Biol ; 83: e274345, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38126631

RESUMEN

The purpose of the present investigation was to determine the effect of rhizobium and gibberellin on the production of hydroponic green forage from red clover (Trifolium pratense L.) variety quiñequeli, four variables were measured: plant height, biomass weight, grass weight and root weight. The treatments were T0: 0%, T1: 10%, T2: 20%, T3: 30% and T4: 40% of Rhizobium before germination and Gibberellin T0: 0g, T1: 2.4g; T2: 3.3g; T3: 4.3 and T4: 5.3g each treatment with 6 repetitions, three applications on days 5, 10, 15 and 20 of growth. Data were analyzed with DCA, ANOVA and DUNCAN's multiple comparisons test; the results obtained were: first measurement with rhizobium without gibberellin there were no statistical differences, second and third measurement with Gibberellin application did not present statistical differences and the fourth measurement presented statistical difference (α=0.05), average height of the plant with a mean of 12.82 cm, T4 was higher, in biomass a statistical difference was obtained with a mean of 3.056 kg, T3 was higher, weight of grass and root did not present statistical differences; concluding that the use of rhizobium and gibberellin could be a usable alternative in the production of hydroponic green fodder, to alleviate the problems of fodder scarcity in dry season, its use being recommended in high Andean livestock.


Asunto(s)
Rhizobium , Trifolium , Giberelinas/farmacología , Hidroponía , Alimentación Animal , Poaceae
18.
Int J Mol Sci ; 24(20)2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37895037

RESUMEN

Caucasian clover (Trifolium ambiguum M. Bieb.) is an excellent perennial plant in the legume family Fabaceae, with a well-developed rhizome and strong clonal growth. Auxin is one of the most important phytohormones in plants and plays an important role in plant growth and development. Auxin response factor (ARF) can regulate the expression of auxin-responsive genes, thus participating in multiple pathways of auxin transduction signaling in a synergistic manner. No genomic database has been established for Caucasian clover. In this study, 71 TaARF genes were identified through a transcriptomic database of Caucasian clover rhizome development. Phylogenetic analysis grouped the TaARFs into six (1-6) clades. Thirty TaARFs contained a complete ARF structure, including three relatively conserved regions. Physical and chemical property analysis revealed that TaARFs are unstable and hydrophilic proteins. We also analyzed the expression pattern of TaARFs in different tissues (taproot, horizontal rhizome, swelling of taproot, rhizome bud and rhizome bud tip). Quantitative real-time RT-PCR revealed that all TaARFs were responsive to phytohormones (indole-3-acetic acid, gibberellic acid, abscisic acid and methyl jasmonate) in roots, stems and leaves. These results helped elucidate the role of ARFs in responses to different hormone treatments in Caucasian clover.


Asunto(s)
Reguladores del Crecimiento de las Plantas , Trifolium , Reguladores del Crecimiento de las Plantas/farmacología , Transcriptoma , Filogenia , Trifolium/genética , Trifolium/metabolismo , Medicago/genética , Medicago/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Plantas/metabolismo , Familia de Multigenes , Ácidos Indolacéticos/metabolismo , Perfilación de la Expresión Génica , Hormonas , Regulación de la Expresión Génica de las Plantas
19.
Sci Rep ; 13(1): 18221, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37880311

RESUMEN

Exploring novel sources of plant protein for nutrition of both humans and animals is motivated mainly by its growing demand worldwide, besides identifying healthy alternatives for animal protein. The present study evaluates metabolome diversity within 15 legume seed species. The examined samples comprised three Melilotus, four Medicago, four Trifolium, and four Ononis seed species. A holistic approach for metabolites profiling using gas chromatography-mass spectrometry (GC-MS) led to the annotation and quantification of 87 metabolites comprising alcohols, free amino acids, aromatics, fatty acids/esters, nitrogenous compounds, organic acids, sugar alcohols, sugars, terpenes, and steroids. Fatty acids represented the major metabolite class represented by palmitic, stearic, oleic, linoleic, and linolenic acids. Sucrose and pinitol were the major sugars and sugar alcohols among seeds. Ononis seeds (OR, OS and OA) were the most abundant in fatty acids, sugars, sugar alcohols, and free amino acids, whereas Melilotus species (MO and MS) were least enriched in these key nutrients posing Ononis as potential food source for humans and animals. The examined seeds were generally low in sulfur-containing free amino acids and lacking many of the essential free amino acids. Multivariate data analysis aided in the identification of Ononis metabolite markers belonging to various classes i.e., (alcohol) glycerol, (sugar) allofuranose, and (sugar alcohol) pinitol, although the differentiation between Medicago, Melilotus, and Trifolium genera was not attained suggestive for other analytical platforms for its classification.


Asunto(s)
Melilotus , Ononis , Trifolium , Humanos , Cromatografía de Gases y Espectrometría de Masas/métodos , Ononis/metabolismo , Melilotus/metabolismo , Trifolium/metabolismo , Medicago , Quimiometría , Ácidos Grasos/metabolismo , Alcoholes/metabolismo , Azúcares/metabolismo , Alcoholes del Azúcar/metabolismo , Aminoácidos/metabolismo , Semillas/metabolismo , Nutrientes/análisis
20.
Plant Physiol Biochem ; 203: 108050, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37812991

RESUMEN

Caucasian clover (Trifolium ambiguum) is a perennial rooted and tillering leguminous forage with strong adaptability, outstanding stress tolerance and other preferable traits. However, the specificity with rhizobia limits the extended application of Caucasian clover. Therefore, it is important to study the changes of genes and metabolites in the early process of nodulation in Caucasian clover to improve its nodulation and nitrogen fixation ability. In this study, we used Caucasian clover as the experimental material to investigate its nodulation mechanism using transcriptomic and metabolomic approaches, such that to break the nitrogen fixation barrier for the promotion of Caucasian clover. Metabolomic and transcriptomic profiling revealed that both DAMs and DEGs were significantly enriched in the phenylpropanoid and flavonoid biosynthetic pathways, with DEGs showing up-regulation at 3 days and 6 days post inoculation (dpi) with rhizobia, and some DEGs showing down-regulation at 9 dpi. Accumulation of flavonoids was significantly increased at both 3 dpi and 6 dpi, and some compounds were significantly decreased at 9 dpi. A total of 35 DEGs were involved in flavonoid synthesis by WGCNA analysis, among which HCT, CCR, COMT and F3H played an important role. This study provides insights in understanding the molecular mechanism of nodulation and nitrogen fixation in Caucasian clover.


Asunto(s)
Rhizobium , Trifolium , Trifolium/genética , Flavonoides , Transcriptoma , Fenotipo , Fijación del Nitrógeno/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...